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Chaos in one-dimensional collision complexes 

P Eckelt and E Zienicke 
Institut f ir  Theoretische Physik I der UniversitU Miimster, D-4400 Miinster, Federal 
Republic of Gemany 

Received 1 5  August 1990 

Abstract. The classical scattering of a partide hy an oscillating potential well is 
investigated. It is shown that the ringularities of the scattering map S form a Cantor 
set for this system. This result is obtained from an analysis of the partide's return 
map, which contains a Smale's horseshoe and. consequently, a hyperbolic invariant 
set with chaotic dynamics. The Cantor set structure of the S-singularities involves 
arbitrarily complex scattaing behaviour. 

1. Introduction 

Chaotic scattering (also termed 'irregular scattering', see the recent review by Eck- 
hardt [l]) in the framework of classical mechanics was first observed numerically in 
atom-molecule collisions [2-41. I t  has  also been found in potential scattering [5-8], 
in gravitational three-body problems [9], in hydrodynamical vortex scattering [ lo ,  111 
and in the scattering of a charged particle by a magnetic dipole field [12]. The essen- 
tial feature of chaotic scattering is a Cantor set of singularities in the scattering map. 
This singularity structure implies highly sensitive dependence of the final scattering 
state on the initial conditions. 

For the explanation of irregular scattering Jung and Scholz proposed the follow- 
ing line of argument (see [S, 121). In the phase space of a system exhibiting chaotic 
scattering there is a hyperbolic invariant set consisting of an uncountable infinity 
of periodic and aperiodic orbits. Their stable and unstable manifolds extend to the 
asymptotic region by means of the Hamiltonian flow. If the projectile enters the region 
of interaction along such a stable manifold, i t  will be captured by the target on the 
corresponding orbit, thus leading to a singularity in  the scattering map. In this way 
the set of unstable orbits in the interaction region causes a corresponding fractal set of 
scattering singularities. This conception about the origination of irregular scattering 
has been tested on some model systems and meanwhile is commonly accepted (see [l]). 

Since a fractal implies a self-similar structure, thereby giving its own rule of con- 
struction, the following question is of interest. In what way is the self-similar structure 
and the corresponding rule of constrnction connected with the dynamics of the hyper- 
bolic invariant set? According to the description given above the fractal structure of 
the scattering data should be an image of the dynamics of the hyperbolic set via the 
Iramiltonian flow. But only in a few cmes can the construction rule of a fractal that 
one finds in the scattering of a system be cleared up (see e.g. [12]). Answering the 
above question is much easier if it is possible to describe the dynamics of the hyperbolic 
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set in terms of symbolic dynamics. The symbolic dynamics has a direct connection to 
the dynamics of the scattering system and, beyond it, gives the construction rule for 
the fractal. Up to now, the symbolic dynamics has  only been found for a few rather 
simple scattering systems (see [8,13,14]). 

In this paper we introduce a class of systems for which a hyperbolic invariant 
set and its symbolic dynamics were found by Alekseev [15-181. The class of systems 
consists of one-dimensional oscillating potential wells. It differs from the models of 
[E, 13,141 by its time dependence and by the fact that the dynamical alphabet has 
an infinite number of symbols. In addition, it seems to have some relevance for the 
description of atomic and molecular scattering processes. We remark that the special 
case of the restricted three-body problem considered by Sitnikov ([19], see also [20]) is 
a member of this potential class. I t  is also mentioned in [l] as a candidate for chaotic 
scattering. 

In the following we will verify in full detail for this class of systems the mechanism 
of the origination of chaotic scattering described above. In addition, the symbolic 
dynamics of the hyperbolic invariant set will enable ns to expose the organizational 
structure of the fractal of scattering singularities and to clear up its connection with 
the dynamics of the system. We proceed as follows. In section 2 we verify chaotic 
scattering and determine its structure with the help of some numerical experiments 
for a representative of our potential class. In section 3 we analyze the formation of a 
horseshoe. The corresponding symbolic dynamics can be extended to the description 
of scattering motion with the help of finite symbol sequences. The results of this 
section are mainly due to Alekseev. For our purpose, which is the understanding 
of the scattering behaviour, i t  seemed to us that a detailed summary of Alekseev’s 
work giving us insight into the behaviour of the system was necessary. Additionally, 
we want to make these results more widely known for their connection with chaotic 
scattering. (The review [l] only mentions a theorem of Sitnikov for the restricted three- 
body system, but not the more general results of Alekseev.) Since the statements of 
section 3 are only of a local nature we have to extend them to a global scale in section 4, 
where we come to the explanation of the structures which we found numerically in 
section 2. 

I 

2. The model and numerical results 

We want to study the classical scattering of a particle by aone-dimensional oscillating 
potential well. We assume the potential V(x,t) to be symmetric and attractive with 
respect to the origin for all times t .  The dynamics of the particle (mass m = 1)  is 
governed by Newston’s equation of motion: 

a i = --V(x,t) ax 
Our system is a Hamiltonian system with the Hamilton function 

To be sure of the existence of a horseshoe in the dynamics of (1) V(x,t) has  (besides 
being symmetric and attractive) to fulfil some additional restrictions which can be 
found in [16] and [18]. 
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As a representative of the admitted potentials we chose 
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1 cos t V ( 2 , t )  = -- - e  
z2 + I (G + 1)5P (3) 

for numerical calculations of the scattering map. The asymptotic behaviour (- 1x1-*) 
for 1x1 -, m is given by the first term. The second term introduces the time dependence 
with a period T = 2s. The perturbation parameter e controls the strength of the time- 
dependent part of the potential. 

To compute the scattering map S-mapping initial states to final states-we have 
to introduce appropriate dynamical variables which become constant asymptotically 
and serve to label the initial and final states. We propose to characterize the free 
motion of the particle by its kinetic energy E and by its time of impact r ,  i.e. the 
instant of crossing the origin. These two variables are connected with the canonical 
pair ( z , p )  by the time-dependent canonical transformation 

(4) 
2 

Tt : ( z , p )  + ( E , r )  E = i p 2  r = t - -_ 
P 

This transformation is valid if 

i.e. the asymptotic motion of the particle is given by free motion. In the case of a 
Coulomb asymptotic ( V ( x , t )  - 1zI-l for 1z1 -+ m) one would have to change the 
definition of r ,  because the particle never becomes free in a Coulomb potential due to 
its long range. 

Denoting the flow of the Hamiltonian system (2) by 

we get the scattering map (see also [21]) t o  be 

This operator maps the incoming pair (E, r )  onto the outgoing pair (E’, r’) of the 
particle. As a composition of canonical transformations S itself is a canonical trans- 
formation. 

We computed S for potential (3) with e = 0.1. (What happens when e is varied 
will be shown at  the end of this paper .) First we held 7 fixed at  the value r = H. Then 
the final asymptote characterized by (E’ ,  r’) is a function only of the initial energy E. 
Instead of E’ and r’ we plotted the ‘inelasticity’ A E  = E‘ - E and the ‘time delay’ 
Ar  = r‘ - r in figures 1-4. As additional information we plotted the number N of 
times the particle passes the origin x = 0. N - 1 is the number of times the particle 
changes its direction of motion. 

In figure 1 we present the results for the energy interval [0.000, 0.0751. One realizes 
a sequence of intervals accumulating against the energy E = 0 on which A E  and A s  
are smooth functions of E .  Between these intervals there are gaps in which the values 
of A E  and A r  seem to jnmp in an irregular way. The intervals belong to trajectories 
with exactly one zero (no turning point), as one can see in the third diagram of figure 1, 
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0 I 1 I 
0 00 0 0 5  

E 

Figure 1. heleaticity AE,  time delay AT and 
the number of zeros N as functions of the incom- 
ing energy E .  The unit of energy corresponds to 
the mean potential depth. Note AE 2 -E.  The 
marked interval is magnified in figure 2. f = 0.1. 

.. .. .. . . . - - - . . . . . ... . .. . . . . 

0 055 0 OB0 0 OB6 
E 

Figure 2. Magnification of the E interval indi- 
cated in figure 1. The marked interval is magni- 
fied in figure 3. The vertical axis has the same 
scale as figure 1. 

where N is plotted against E .  In the gaps the corresponding trajectories have two or 
more zeros. The straight line in the diagram A E  against E corresponds to E' = 0. 
The area under this line is forbidden, because E' must be greater than or equal to 
zero. For E' -+ 0, i.e. A E  - -E we have r' + -CO, i.e. Ar - --M, as one can 
see from the transformation (4). In the following text we will call escape orbits with 
E' = 0 parabolic and escape orbits with E' > 0 hyperbolic. 

Figure 2 shows a magnification of the gap marked in figure 1. The irregular be- 
haviour of the values of A E  and AT in figure l dissolves into a new series of intervals 
on which A E  and A r  are smooth functions of the initial energy. The intervals accu- 
mulate against the boundaries of intervals with N = 1 enclosing the gap. As can be 
seen from the third diagram the intervals belong to trajectories which pass the origin 
z = 0 twice and change its direction of motion along the z axis once. Between the 
intervals there are gaps in which the values of A E  and Ar seem to be distributed in 
an irregular way. 

The next figure (figure 3) shows a magnification of the left part of one of these 
gaps. Here we find the same structure of intervals with N = 3. In the gaps we have 
N > 4. Here we made a magnification of the right part of one of the gaps and again 
found the same structure, one level higher in N (figure 4). 

In summary, we found the following self-similar structure: in the gap between two 
N intervals (i.e. intervals belonging to solutions with N zeros) one finds an infinity of 
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. . . . .. .. . . . . . . . 
L 

Figure 3. Magnification of the E interval indi- 
cated in figure 2. The marked interval is magnified 
in figure 4. 

I l 
0 (158101 0 OEBiOB 

E 

Figure 4. Magnification of the E interval in- 
dicated in figure 3. The vertical axis has the 
same scale as figure 3. 

( N  + 1) intervals on which A E  and Ar are smooth and which converge against the 
boundaries of the enclosing N intervals. The number N of zeros of the solut,ions plays 
the role of an order parameter marking the level of the observed self-similar structure. 
The smooth intervals become open intervals when we exclude their boundaries, which 
correspond to parabolic escape (E' = 0). Successive removal of all the smooth open 
intervals with N = 1 , 2 , 3 . .  . leads to a Cantor set ofsingularities of the scattering map 
consisting of the initial conditions with out-asymptote E' = 0 and initial conditions 
without out-asymptote (capture orbits). 

According to our results the scattering map is continuous where N is constant, 
and discontinuous where N changes its value. Therefore i t  is desirable to know the 
shape and the distributions of the sets 

in the ( E , r )  plane. This leads to our next numerical experiment. We computed C,, 
the set of all scattering initial conditions whose corresponding trajectories have exactly 
two zeros, in the ( E , r )  plane. We restricted 7 to the interval [0,2n) because of the 
271 periodicity of the potential oscillations. We divided the E interval [0.03,0.09] and 
the r interval into 500 and 400 equidistant points, respectively. Each of these 200000 
initial conditions was integrated numerically until it could be decided, whether the 
corresponding solution possessed N = 1,  N = 2 or N 2 3 zeros. For all trajectories 
with N = 2 we marked the corresponding ( E , r )  by a dot, thus obtaining C,. The 
result of this procedure can be seen in figure 5.  
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r / r n  

Figure 5.  The subset C1 (bladt) of the complex scattering region C, i.e. t,he subset 
of ( E ,  ~)-values, which lead to scattering trajectories with exactly two zeros. c = 0.1. 

As can be seen, there is a critical energy E, above which only simple scattering 
with N = 1 is possible. Below this value a strip of initial conditions begins on which 
N 2 2 holds for the corresponding trajectories. We call this strip (which consists of 
several components because of the folding of 7 E R into r E [ 0 , 2 ~ ) )  the region C 
of complez scattering. In this region the components of C, lie in the shape of loops, 
which accumulate against the boundary of C. Between these loops there are gaps (in 
the shape of loops themselves) in which N 2 3.  The line r = II shows the interval 
boundaries of figure 1 and figure 2. 

From figures 1-4 we expect that in the gaps between the C,-loops there are C,- 
loops accumulating against the boundaries of enclosing C,-loops. And between the C,- 
loops there are gaps containing C3-loops and so on. The region of complex scattering 
has a self-similar structure. If we removed all open C,, C,, ...- loops, a Cantor set 
of lines consisting of capture orbits and orbits with E' = 0 parabolic escape would 
remain. So we have demonstrated numerically the appearance of chaotic scattering 
for our example potential. 

As we said at  the beginning, our example is a representative of a class ofpotentials, 
for which the existence of a hyperbolic set, whose dynamics can be described in terms 
of symbolic dynamics, can be shown analytically. This enables us  to compare our 
results of irregular scattering with the properties of the hyperbolic invariant set of the 
system. For example, since in every step of the self-similar structure o f C  we found an 
infinity of components, on which the scattering map S is continuous, one can expect 
that the symbolic dynamics of the horseshoe involves an infinite number of symbols. I 

This is true indeed, as will be seen. 
The aim of the remainingsections is to find the connection between the hyperbolic 

invariant set and the chaotic scattering that originates from it. We will try to verify 
in detail for our class of systems the picture given in the introduction: the scattering 
singularities are caused by the stable invariant manifolds of the hyperbolic invariant 
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set, which are transported by means of the Hamiltonian flow of the system into the set 
of the scattering initial conditions. In this way the fractal properties of the hyperbolic 
invariant set mirror themselves in the scattering data. 

3. The appearance of horseshoe chaos 

In this section we want to analyze the formation of horseshoe chaos in our class of 
systems. Results concerning this problem were found by Alekseev [15-171. (A review 
by Alekseev can be found in [la]; a special case-the restricted three-body problem- 
is discussed by Moser in [20].) We present here a summary of this work because 
the results are not yet as widely known as they deserve to be with regard to their 
importance for scattering chaos. This will give us insight into the dynamics of one- 
dimensional oscillatory potential wells, which we need in order to understand their 
scattering behaviour. However, the existence of a horseshoe will only be shown locally 
so that we have to extrapolate i t  to a global scale. This will be done qualitatively in 
section 4. 

We begin with the introduction of an appropriate discrete map, which allows us 
to describe the dynamics of the system. If we regard symmetry and attractivity of 
V(x, t )  with respect to x = 0, the return map D of our system can be defined as 
follows. Every time a solution x ( t )  of (1) crosses the origin z = 0 (which has to take 
place at  least once because of the attractivity of the potential), we mark the time 2, 
and the momentum p, at  this instant. The triple (x  = O,p,,t,) uniquely determines 
an initial condition of (1); we denote the corresponding solution as x(t:p,,%t,,). If 
we consider a zero (p,,t,) of a solution x ( t ) ,  there are two possibilities for what can 
happen next: either (i) the particle is reflected by the potential and crosses the origin 
at  time tntl with momentum pntl again in the opposite direction, or (i i)  the particle 
is not reflected hut escapes to x = m or x = -m. In the first case D is defined as 

D : (P"3t") - (P"t1 , i"t l ) .  (9) 

Symmetry and periodicity of V(x , t )  yield the identities 

s(t;p,,t,) = s ( t+2n;p , , tn  +2a) = -s(t;-p,,t,) (10) 

which allow ns to restrict the variables (pn, tn)  t,o the intervals p,, 2 0 and 0 5 t ,  < 2*, 
respectively. As for pn = 0 we have the trivial solution x(t) E O,p(t) E 0 (which follows 
from the second identity of (10)) and t ,  in this case is undefined; we can int.erpret 
(p,,,t,) as a pair of polar coordinates in a plane r. Thus, D can he understood as a 
map acting on the points of r. 

The domain Rt of D is given by all those points (p,,t,) E r for which the 
corresponding solution x ( t ;  pnl tn) is reflected by the potential and possesses a furlher 
zero at  time tnt1 : x(tntl;p, ,t ,)  = 0. This corresponds to case (i). In case (ii) D 
is not defined. In case (i) let Tt and X +  he the time and space coordinate a t  the 
instant the particle changes its direction of motion (see figure 6). In case (ii) we define 
Tt  = CO, X+ = CO. Then one considers the function 
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1 V k t l  

Figure 6.  Symmetric oscillating potential well (upper part). Solutions c(t;p.. t.) 
with (i)  return and (ii) no ret- (lower part). 

with the time-averaged potential V o ( z )  = ( 2 ~ ) ~ ~  s,'" V(z,t)dt. Physically, E+ is the 
energy of the particle a t  time Tt and place Xt in the time-averaged potential V,(z). 
In case (ii) E+ is equal to the energy E' of the out-asymptote of a scattering process 
for t - +Co. 

The function E+(p , ,  t,) has some interesting properties. It is finite and continuous 
on the whole plane r and continuously differentiable on r\{O}. The value of its unique 
minimum in the origin of r is V,(z = 0). Its level lines E t ( p n , t , )  = constant > V,(O) 
are diffeomorph to circles, i.e. they are Jordan curves. This statement will turn out 
to he useful soon. According to the values of E t ( p , ,  t,) we can subdivide r in the 
following way: 

The origin 0 of r corresponds to the trivial solution. R+ was introduced as the 
domain of D. This is consistent with the above definition, because the inequality 
V,(O) < E C ( p , , t , )  < 0 is equivalent to 0 < X + ( p , , t , )  < 00, which holds in case 
(i). Pt is the set of points in r corresponding to parabolic solutions. Because of the 
condition E + ( p , , t , )  = 0 P+ is a level line of E+ and therefore a Jordan curve. It 
encloses the domain R+ of D, which is an open set and hounded on r. The origin lies 
in the interior of P t .  The elements of H+, finally, correspond to hyperbolic solutions. 
For a picture of the situation see figure 7. 

All definitions and conclusions for the future t > t ,  of a solution z ( t ; p , , t , )  can 
be transferred verbatim into the past t < t ,  by following the solution backwards in 
time. E -  is defined as the energy of the particle in the time-averaged potential V,(z) 
a t  the last turning point X -  at time T-. In case (i) T- and X -  are finite and in case 
(ii) E - ( p n , t n )  is equal to the energy E of the initial asymptote. Since E - @ , ,  t , )  has 
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Figure 7. The subsets R+,  P+ and H +  of the r plane. 

?he Same a E+/- ,y",-", ,  i +ha "1.- "-"I ,I R-, P -  and f -  a:e defined a~&goxs!y 
to R t ,  P+ and  Ht and have the equivalent properties and meanings. R- is the set 
of all points (p", t , )  E r for which the particle returns to the origin, if one follows the 
corresponding solution back t o  the  past t < t,. Thus, R- is the image of Rt under 
the return map  D: 

- W R t )  \-" = .@-. !!I;! 

In other words, R- is the domain of the inverse map D-l.  As the return map D is 
derived from the Hamiltonian system (Z), it can be shown t o  be area preserving. This 
in addition implies t ha t  R+ and R- must have the same area. The  functions Et and 
E- are connected by the return map D :  

E + = E - O D .  (17) 

In words this means: the averaged energy of the next turning point of the actual zero 
is equal to the averaged energy of the last turning point of the next following zero of 
a solution of (1). 

If the potential V ( z , t )  = V9(z) is not time dependent, the energy is an integral of 
motion, Bound motion is then given for energies less than zero, and unbound motion 
is given for energies greater than or equal to zero. R+ and R- coincide in this case 
and are given by the open circular disc 

Po < +w9. (18) 

The  appearance of chaotic motion in our class of systems results from the fact that  
R+ # R- for time-dependent potentials. The  model potential (3) is time independent, 
if c = 0. Then R+ = R- is given by (18). If we let E increase continuously, the actual 
form of R+ and R- for E > 0 must evolve from the open disc (18). Since R+ and 
R- have the same area, one expects t ha t  their boundaries P+ and P-  intersect 
t;ansue:sa!!y in a~ e:ren n u ~ b e :  of points. We cd! intersectioz p c i z t ~  of .p+ 2.d p -  

with distinct tangents regular points. Their existence is of central importance for the 
following discussion. 

T h e  simplest situation with two regular points that  is realized in our model PO- 
tential (3), is sketched in figure 8. In addition to the common features of the whole 
class of systems, there is a reflection symmetry with respect t o  the ray t ,  = 0 due t o  
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0 

Figure 8. Various sets of initid conditions on r ea defined in the text. I and 0 are 
the incoming and outgoing regiom for complex scattering trajectoriar (see section 4) .  

time reversal invariance of the potential. The sets I and 0 marked in figure 8 will be 
discussed in section 4. 

We proceed to a property of the return map which is essential for the appearance 
o f t h e  horseshoe. Consider the smooth curve y in figure 9, which begins in the interior 
of Rt and intersects Pt transversally. In the neighbourhood of the intersection point 
it meets (due to  continuity) all level lines of Ef(p,,t,) transversally, too. Due to 
continuous differentiability of D its image D ( y )  likewise is a smooth curve. We will try 
to derive its qualitative shape. For the image point (pntl,t,,,) E D(y) of (pn, t,) E y 
because of (17) the equation E-(p,+,,t,+,) = E+(p,,t,) has to he fulfilled. That 
means (p,+,,t,,,) lies as near to  the boundary P- of R- as (p,,t,) lies to the 
boundary Pf of Rt. (Remember that E-(pn+,,tnt1) = e =  Et(pn,t,) define level 
lines of E- in R- and of E+ and Rt for e < 0.) The qualitative shape of D ( y )  
becomes clear, if we also regard the following effect: while we approach Pt on the 
curve 7, the time of the next zero tnt l  grows to infinity, because for (p,,t,) f P+ 
the corresponding solution escapes parabolically, i.e. t,,, = 00. Since t,+,, is the 
azimutual angle of the image (pntl,tntl), D ( y )  will wind around the origin an infinite 
number of times, while it approaches P- asymptotically. We conclude that D(y) is 
an infinite spiral asymptotic to the boundary P-. 

Figure 8. Image D ( y )  of a curve y meeting P t  transver=aIIy. 

Now we are prepared to show how a horseshoe arises in the dynamics of the return 
map. We consider the neighbourhoods U, and U2 of the two regular points wliich 
are defined by the conditions IE-(p,,,tJl 5 6 and IE+(p,,t,)l 5 6. The boundaries 
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of U ,  and U, are given by corresponding pieces of the 'level lines E-(p,, t , )  = f 6  
and E+(p,,t,) = f6 (see figure 10). The boundaries E-(p,,t,) = &6 of U, fl Rt 
are smooth curves beginning in the interior of R+ and intersecting P+ transversally. 
Consequently, as described above, by application of D they are mapped to infinite 
spirals approaching the boundary P -  asymptotically. Since D(U, n Rt) is bounded 
by these spirals, i t  must have the shape indicated in figure 10. As is also indicated in 
figure 10, the image D(U, n R f )  intersects U ,  as well as U, in an infinite number of 
strips acmniuhtiiig against P-. "inis oi course is true ior D(V, f i  E+), too, so that 
one finds in U,nR- and CJ,nR- strips coming from U,nR+ as well as from U,flR+. 

. 
U: P' 

Figure 10. The neighbourhoods U, and U, of the 
U1 n R+ under D. 

two I regular ' points. Image of 

If we apply the coordinate transformation 

( ~ ~ ~ 4 , )  - (&,v i )  = ( E - ( p " , t " ) , E + ( p ~ , t n ) )  i =  1 , 2  (19) 

for the neighbourhoods U, and U,, they will take on the shape of squares 

Q i = { ( ~ i ~ ~ i ) I I ~ i I ~ ~ ~ I q i I  5 6 1  i = 1 , 2 .  (20) 

l7-- al... E,.Il-... :& :- F..1 1.. a n I I  &L- e A:-,.-+:-..- ..$&L- --.."_ ^- h--:---&-l --,I rl.... 
I", U l l C  '"L'".*LL'r, 1 Y  11 " I C L U L  Y" L'L.11 U l l F  c,i "IIL.C.YI".In "I Y l l C  "'I"LL.C" . . " L I Y " . l l l a l  -1," Y l l C  

qi directions vertical. The return map D on the squares can also he represent,ed by 
the coordinates ti and qi .  To show how D acts on the squares Qi (i = 1,2) that are 
depicted in figure 11, we also sketch schematically their pre-images D-'(QinR-)  and 
images D(Qi fl R+) (compare with figure 10). The pre-images intersect Qi (i = 1 ,2 )  
in an infinite number of horizontal strips accumulating against the Ci axes, whereas 
the i-ags inte:seet Qi (1 = I ,  2) in an infinite nu-be: of ve:?ica! strips zccu-u!zting 
against the vi axes. We supply 'tbe horizontal strips aij with two indices i and j 
following the rule: i marks the square Qi in which the strip aij lies and j counts (in 
the vi direction) the strips lying in Q i .  By the application of D each horizont,al strip 
a . .  is mapped to a vertical strip bij  which is part of the intersection of D(Qi n R t )  
with the square Qi,. So the bi j  take their index from their pre-image aij but lie i n  t,he 
*"ll1l'- n... 

'? 

-.I---- 9 1 ' .  

D ( a i j )  = b i j  C Q;,. I (21) 

In figure 11 we have the rule: i' = i, if j = 1 , 3 , 5 ,  . . . and i' # i, if j = 2 ,4 ,6 , .  , .. The 
image strip bij evolves from its pre-image strip ai j  by contracting aij  in the horizont,al 
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direction, by expanding it in the vertical direction and by moving i t  along t,he spiral 
from the square Qi t o  the square Qi,. In this procedure the vertical edges of aij  are 
mapped onto the vertical edges of bi j  and the same is true for the horizontal edges. 
These properties, namely (i) contraction in the horizontal direction, (ii) expansion 
in the vertical direction and (iii) the way the horizontal and vertical boundaries of 
horizontal strips are mapped, define a generalized horseshoe map (see [22,23]). 
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\ 
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Figure 11. Schematic plot of D(Q n Rt) and D-'(Q n R - )  with Q = QI n 81. 
Horizontal strips (I,) and vertical stripe b2, .  

The main consequence of the horseshoe is the existence of a hyperbolic set A ,  
which is invariant under D on Q = Q1 U Q2. The dynamics of D is topologically 
conjugate to the shift map U on the space C of sequences s. C is given by 

(22) r. r~ I = 1s = ~...~-,s-~;s,s,s, ...)I sk E AVB E Zj. 

The alphabet A, from which the elements of the sequences are taken, consists of the 
indices marking the horizontal strips. So in our case we have A = {1,2)  x A'. This 
confirms the impression we had from t,he scattering data in section 1:  in our system 
an infinite alphabet is needed for the horseshoe. The shift map U shifts all elements 
of a sequence one piace to the ieit: 

U : C i E, s' = U(.) with s; = skt,Vk E 2. (23) 

The conjugacy of D and U is given by a homeomorphism + and is usually expressed 
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in the following commutative diagram: 

4 assigns to each point q E A a sequence s E C by the following rule: the kth symbol 
s, of s takes on the value T E A ,  if the Lth iterate Dk(q)  lies in the horizontal 
strip a,.  Thus, the sequences s contain the information about the dynamics of tlie 
corresponding point q under iteration. Concerning the construction of the space of 
sequences in our system we have to pay attention t o  a subtlety, that  was overlooked 
by Alekseev ([17, IS]). Not all sequences s E C are allowed. As already mentioned 
in connection with (21) one deduces from figure 11 that  an order . . . s r s k t 1 . .  . is 
forbidden unless iktI  = i, for j ,  = 1 , 3 , 5 , .  . . or ikt l  # i ,  for j, = 2 , 4 , 6 , .  , ., i.e. 

iktl + i, + j, = odd integer. ( 2 5 )  

Consequently in (24) C has t o  be replaced by the restricted space of seqnences 

C' = {SI., E { 1 , 2 }  x N,(25)  fulfilled V k  E 2}. (26) 

The  transition matrix (see [23]) of C' is irreducible. As a consequence the set E', 
if equipped with an appropriate metric, is totally disconnected and perfect hut not 
compact due t o  the infinity of symbols. These properties are transferred to the set A 
by 4-l. Thus, A is a non-compact 'Cantor set' (bounded on Q but  not closed). 

So far we were concerned with the symbolic dynamics as commonly known. In 
our system it is possible t o  extend C' to a space of sequences Ct which in addition 
to the bi-infinite sequences of C' contains sequences that  are finite t o  one or both 
sides. To establish a conjugacy as in (24) the invariant set A must also be extended 
to a set At which contains the points of Q having the corresponding finite dynamics 
under forward or backward iteration of D.  The  'entrances' or 'exits' of such sequences 
correspond t o  scattering motion for t - -w or t - +m, respectively. 

Let D'(q) E Qi, (k E 2). We consider as etilrance the vertical line ti, = E 2 
0. If D k ( q )  lies on an entrance, it must be the first iterate of q ,  becausc Cik = 
E-(D'(q))  2 0 means that D'(q) E P- U H -  (remember the definitions of R*, Pi, 
H*). One can regard an entrance as a degenerate vertical strip. By the declaration 
of the initial energy E and the following dynamics the corresponding point q E Q 
is defined uniquely. We mark the opening element of such a sequence by s , - ~  = E.  
DI'(q) lies in the horizontal strip Thus, the 
corresponding sequence looks like ( E s ,  . . . sW1;  sa . . .). As an ezit we charact,erize tlie 
horizontal line vi, = E' 2 0 that  one can regard as a degenerate horizontal st.rip. If 
D k ( q )  lies on an exit, it is an element of Pt U H + ,  because E+(D'(q) )  2 0 holds. 
Consequently D*(q) must be the last zero of the trajectory corresponding to q E Q. I\S 
the  closing element of the sequence we take s, = ( i k E ' ) .  The corresponding sequence 
(. . . S - ~ ; S ~ .  . . akwl ( ikE' ) )  also uniquely defines a point q E Q. (We remark that there 

which defines the next element. 
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is a slight asymmetry in specifying opening elements and closing elements, As an exit 
replaces a horizontal strip one has to name the square Qi, in which it lies. For an 
entrance replacing a vertical strip this is not necessary, because the square of the first 
zero is marked by the subsequent element of the sequence.) 

One can also construct sequences that are finite to both sides. As can be shown, 
they are also in one-bone correspondence to points in q E Q .  If we extend the 
alphabet A with the help of the set B = [0,6] of opening symbols and the set C = 
{1,2} X [0,6] of closing symbols, we can write the extended space of sequences as 

C+ = {.Isk E A U B U C ,  but 8 ,  
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B for m 1 0  and 
s,, # C for n _< 0, (25) fulfilled V k  E Z)]. (27) 

The shortest possible sequences in C+ are of the form (E;so ( i lE ' ) ) .  The shift map U 
can be applied to the elements of C+ at least once. The image of C+ is the set C- 
consisting of all sequences that can be generated by shifting the sequences of C+ one 
place to the left. 

We are especially interested in what A+ looks like. We give an inductive construc- 
tion. Consider an arbitrary horizontal strip ab0.  If we map it by the application of D to 
its image ba0 lying in Qi, the upper halfof bso will lie on the upper half (qi, >_ 0) of the 
square Qi,. So aso contains an q substrip (of order 0) which consists of points having 
exactly one further iterate. In the other half of aso there are horizontal substrips aSOS, 
containing all the points having a t  least two further zeros. They accumulate against 
the edge of the q substrip of order 0, which beIongs to the parabolic escape E' = 0. 
Two successive applications of D map them to the vertical strips b 3 ,  (lying in Qi,). 
The upper half of them lies in the area vi, 2 0. Consequently the strips O s O s ,  all have 
q substrips (of order 1) consisting of points having exactly two further iterates. The 
other half of aaos, contains substrips Q ~ ~ ~ ~ ~ ~ , , ,  and so on. We are led to a self-similar 
structure, which strongly reminds us of the one we found by the comput,ation of the 
scattering map. In figure 12 the horizontal strips Q ~ ~ ~ ~ , , , ~ , - ,  of order I - 1 are shown. 
They contain the q substrips of order I - 1 (hatched) and in the other half a group 
of horizontal strips of order 1. They converge against the edge of the q,-l continuum 
corresponding to solutions escaping with energy E' = 0 after N = I further zeros. 

The same construction can be carried out for the vertical strips b s - ,  lying in Qi, 
with respect to backward iteration S - ~ S - ~ S - ~  .... One obtains the same picture in 
the half F,, < 0 of Qi,. The intersection of all q, and, say E,,, substrips, constitutes 
A+. One can show that is a homeomorphism on A+,  too. Defining A- = D(A+), 
for our system the extended commutative diagram 

+ i  / +  
t U 4 

c+ - c- 

We presume that the compactification of A to a Cantor set is accomplished by 
adding parabolic motion for t + -cc (E = 0) and t --t +m (E' = 0). To C' one 
adds the sequences beginning with E = 0 and ending with (i,,E') with E' = 0. The 
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01.1 

I 

Figure 12. Horizontal strips and 7 substrip of ordm I ,  1 - 1: ai, ai-, and m, q i - i ,  
respectively. 

proof of this statement goes beyond the scope of this paper. I t  might be a subject of 
interest k r  Fxther investig-tiax. 

What are our results? We have shown locally-i.e. in small neighbourhoods of the 
regular points-that the return map D contains a horseshoe with an infinite alphabet. 
We succeeded in extending C and A so that scattering motion also can be described. 
The conjugacy (28) leads to the following important result. Given any initial and 

> 0) which is a!!owed by (25) there is exac.t!y one scattering t,rajec.!.ory, which 
comes in with energy E, goes out with energy E' and has the intermediate dynamics 
s, ... S - ~ S ~ .  .. s,. The existence of capture and decay motion is guaranteed by the 
corresponding sequences of Et. 

final energies E,E' (sufficiently small) and any sequence s,. . . S - ~ S ~  .. .s, (m < 0, 

4. Scat te r ing  data and in te rna l  dynamics  

From section 3 we know that there is a horseshoe in the dynamics of the return map and 
we are sure of the existence of capture, decay and scattering motion with arbitrary 
internal dynamics. Constructing the set A+ we obtained a picture, that  strongly 
reminds us of the structure of our scattering data (see figure 12). The deficiency of 
these results is their restriction to small neighbourhoods of the two regular points. We 
will try to improve the situation by some global qualitative considerations. To explain 
the scattering data by means of the dynamics of the return map D on the plane r we 
must in addition find out in which way the points on r are connected with the initial 
and final states of scattering characterized by the points in the (E, T )  plane. Together 
with our global considerations this will enable us  to understand the fractal structure 
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of the region of complex scattering C we observed in the plane of scattering initial 
conditions. 
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To begin with, we define the sets 

z = (P-  U H - ) n R +  and 0 = R- n(P+U H t )  (29) 

which are of central importance for scattering in our class of systems (look back at  
figure 8). The elements of I lie in the domain of D and in the complement of the 
domain of D-'. That  means ( p o ,  t o )  E I is the zero of a solution z ( t ;p , ,  t o )  which has 
no further zero in the past t < to ,  but at least one further zero ( p , , t , )  E R- in the 
future t > to .  Whether there is a third zero (pz,tz) of z(t;p,,t,) depends on where 
(p l , t l )  lies: if it is an element of Rt n R-, a further zero (pz, lz)  exists; but i f  it is 
an element of 0, (pl , t l )  is the last zero of z(t ;po,to).  Generally, in the nth step one 
must know whether (p,,, t , )  lies in Rt n R- or 0 to decide if there is a further zero 
( p , + , , t , + , )  or not. Thus, I and 0 have a complementary meaning: Z, the incoming 
region, serves as an entrance from the asymptotic region to the internal dynamics of 
the system described by means of the return map D, and 0, the outcoming region, is 
the ezit back to the asymptotic region. 

We claim that I corresponds to the region of complex scattering C (see section 2) 
in the ( E ,  r )  plane. The scattering initial states in C belong to solutions with two or 
more zeros ( N  2 2). Outside C we only found simple scattering ( N  = 1) in section 2. 
The zeros in Z likewise belong to solutions with at  least two zeros, and I is a subset of 
P- U H -  which contains all scattering initial conditions in r. The complement of Z in 
P - U H -  is ( P - U H - ) n ( P t U H t )  which corresponds tosolutions having exactly one 
zero (simple scattering, N = 1). The transformation from a zero (Po,&,) E P- U H -  
to a scattering initial condition ( E ,  r )  is given by 

( E , r )  = x(po,to) = 1-- -m lim Tt 0 @ r t , ( ~ o  = 0 , ~ ~ ) .  (30) 

The Hamiltonian flow alto of the system maps the initial condition z(to) = 0, p ( t o )  = 
po, corresponding t o  the zero (po,to) E P- U H - ,  backwards in time to the point 
(z(t),p(t)) in phase space. The corresponding asymptote ( E ,  r )  is then determined 
by the subsequent application of Tt in the limit t -+ -03. x maps the level line 
E-(po, to)  = constant, which surrounds R- in r, to the horizontal line E = constant 
in the ( E , r )  plane. In particular P- corresponds to E = 0. The behaviour of x is 
determined by the following two asymptotic properties due t o  the definition of r in 
(4). Let t o  E [0,2a). (i) For E + 0 we have r + 03. (ii) For E - 03 we have r + t , .  

I is seperated from simple scattering in P- U H -  by the intersection of P' with 
P- U H -  (see figure 8). The boundary of C in the ( E , r )  plane is the image of 
P+ n ( P -  U If-) under x. The critical energy Ec, the upper bound for complex 
scattering to take place, is given by the highest level line E-(po, to)  = constant which 
is intersected by P' n (P-  U H - ) .  We confirm our considerations by a numerical 
experiment on example (3).  We computed P+ n ( P -  U H - )  for several values of E and 
transferred i t  by numerical integration into the ( E ,  r )  plane. The results can be seen 
in figure 13. As one expects from property (i), C possesses an infinite 'tail' for r + 00 

as E - 0. We observe that E, and the area of C increase with increasing values of 
e .  This is in accordance with the fact that c gives the maximum variation of V ( z , t )  
with time at the origin z = 0. E can be shown to be the upper bound for E,. For our 
example E, is almost linearly dependent on E with a factor 0.86. E, corresponds t o  
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a minimum time interval At for traversing the range Az of the potential. As a lower 
bound for At one estimates (with E, < 6) 

Az A z  At = - a>Jz; 

If we estimate A z  as fi (e.g. distance of turning points of (3)), we get At > e- ' / ' ,  
which is a considerahie fraction of the period oi  osciiiation T = 2~ ior the e vaiues of 
figure 12. 

0 
0 , , , , , , , , ,  , , , , , , , , ,  r , , , , . , , ,  

OQIO La 2 0  
r/2n 

Figure 13. Regiom C of complex scattering by the oscillating potential well (3) 
c = 0.1,o.z ,..., 0.9. 

We return te the fracta! properties of C. We wan? to exp!ain ?he frzctl! c rgAaa-  
tion of the sets C,, corresponding to solutions with N = n + 1 zeros. By means of x 
this problem is now reduced to the investigation of I. We can carry out this investi- 
gation because of the detailed knowledge we have of the properties of the return map 
D. We begin with the definition of the sets 

S: = !!Pn;2,)!D1!po,t,!ER+ for k = O ; l :  . . .  : n - 1  and D"!p , , t o !EO!  (32) 

n = 1,2,3, . . .  ( D o  the identity). The elements ( p o , t o )  of S i  in r correspond to 
solutions having n zeros in the future t > t o  apart from the zero (pa,to) and then 
escape to a final state of scattering. The sets 

I" = Ins: (33) 

correspond (via ,y) to the sets Cn of C. The intersect,ion of S: with I guarantees that 
( p o , t o )  is the first zero of a solution in I,,. So the total number of zeros for elements 
of I, is N = n+ 1. By means of the commutative diagram (28) one can deduce from 
the sequences (E;s,s,  . . . S ~ - ~ ( ( , E ' ) )  that none of these sets is empty. But l , , I z , l ,  ,... 
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do not contain all points of I. There are the sequences (E; soalsz.. .) with an infinite 
number of zeros for t > to .  They correspond to capture orbits. Thus we conclude that 
the set 
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likewise is non-empty. Its image Cm under x represents the set of scattering singular- 
ities of the scattering map S. It consists of the stable manifolds of A. 

We want to deduce the shape of I ,  and I, now. For this aim we construct the 
sets S$ (see figure 14). We obtain S: according to its definition as the pre-image of 
0: 

S: = D-'(O). (35) 

To find its shape we remember that a curve 7, intersecting Pt transversally from its 
interior R+, is mapped by D onto an infinite spiral asymptotic to P- .  The same 
holds for the application of D-' to a curve intersecting P- transversally from its 
interior R-. Then the pre-image is an infinite spiral in R+ converging against Pt. 
The boundary between 0 and R- Rt intersects P- transversally at  the two regular 
points. Thus, the pre-images of these two ends of the boundary represent such spirals 
as described above. As a consequence Sf qualitatively has the shape indicated in 
figure 14. The complement of S: in Rt is given by the pre-image D-'(R+ n R-).  
Now the shape of I ,  = I n  Sf can easily be read off. I, consists of an infinite number 
of spiral segments accumulating against P+. Transporting this shape back into the 
(E, 7 )  plane with the help of x we find the picture given in figure 5 in which C, w a s  
calculated numerically. 

Figure 14. Subsets S i  and I ,  = Ins: for n = 1,2. The I ,  are intersected by the 
ray 70. See figure 15. 

We continue with the construction of S t  from S: in the following way: 

S$ = D-'(Sf n R-).  (36) 

Since S: n R- is a subset of R+ n R-,  the set S t  lies in D-'(Rf  n R-) ,  which 
is the complement of D-'(O) on R+. S: n R- essentially consists of an infinity of 
segments meeting P+ transversally on both ends and accumulating at  P- .  Each of 
these segments is mapped under D-' to a loop with two infinite tails spiralling against 
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P + .  The set S: is constituted by all these double spirals; it is also sketched in figure 14. 
As a consequence I, = Ins:, i.e. the set of points belonging toscattering orbits with 
three zeros, consists of an infinity of segments between each pair of neighbouring I, 
segments accumulating at the boundaries of the I, segments. 

The structure given above continues in a self-similar way: between each pair of I ,  
segments there is an infinity of I,,, segments accumulating against the I, boundaries. 
This can be shown by making use of the generalization of (36): 

for n = 1,2,3,. . .. The segments 11, I,, . . . are transported by x to the corresponding 
loops of C,, C,, . . . under conservation of their accumulation structure. To see what 
happens if one makes a section of C-as we did in figures 1-4 by setting 7 = x-we 
have also plotted a ray yo in figure 15 which has a non-empty intersection with I. 
The structure of the intersections I, n yo, I2 n yo and I3 n yo is sketched in figure 15. 
We find infinities of accumulating intervals, as we computed numerically in figure 1-4. 
(The section to  = constant is not exactly the same as T = constant, but a qualitative 
difference can only be seen for I, and C, intervals.) 

O P -  P' 

Figure 15. Selfsimilar distlibution of the intervals I .  nyo 

Finally we want  t o  add something about the stable invariant manifolds of A.  We 
describe the situation in I. The results can be transferred via x to the region of 
complex scattering C. The stable invariant manifolds of A (see section 3) are given 
by all the points in A+ corresponding to sequences 

( E ;  soslsz. .  .) (38) 
that are finite to the left, but have infinite dynamics to the right. One can show 
that the infinite forward sequence s O s l ~ , s 3 .  . . in Qi, fixes a horizontal curve that is a 
stable manifold of A (see [22,23]). Thus, each allowed forward dynamics determines 
one stable manifold of A. The point belonging to the sequence (38) is determined by 
the intersection of the horizontal stable manifold with the vertical line I,. = E. So 
the stable manifolds are horizontal lines in Q, n I and Q2 n I. This means that they 
are parallel t o  P+ in the vicinity of the two regular points. 

This is in accordance with our global considerations. We obtain the stable mani- 
folds globally by removing all the sets I, successively (see equation (34)). I ,  consists 
of the uncountable number of curves lying between I,, I,, 13 , .  . . (parallel to P + ) .  This 
set is fractal, but not closed. Its closure is accomplished through the addition of all 
the solutions which in the future escape after an intermediate dynamics sos1s2 . .  .s, 
parabolically with E' = 0. The fractal I, with its closure forms a Cantor set consisting 
of an uncountable number of lines. In physical terms, the Cantor set of discontinuities 
of the scattering map is caused by capture orbits and orbits with parabolic escape. 
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5. Conclusions 

The return map that we introduced in section 3 with the help of a somewhat unusual 
surface of section turned out to be a very useful tool for the understanding of irregular 
scattering in the considered class ofsystems. This is due to the following two properties 
of the chosen surface of section. Firstly, the spiral-property of the return map, which 
is essential for the appearance of a horseshoe, enabled us to construct the sets I, 
(corresponding to solutions with N = n +  1 zeros) in the incoming region I .  Secondly, 
the subset H -  of r is in one-to-one correspondence with the initial states of scattering 
motion by means of the transformation x .  The region C of complex scattering in the 
(E, r )  plane, which we found numerically in section 2, is the image of Z C H -  under x .  
Thus, the fractal structure in the interior of Z explains the one we found numerically 
in the interior of C. 

The level of the self-similar structure in I and C is controlled by the number 
N of zeros of the solutions, i.e. the number of times a solution passes through the 
surface of section z = 0. The higher N ,  the longer a trajectory follows the dynamics 
of the hyperbolic invariant set A. As it seems from our numerical experiments, the 
measure of the sets Z, and C, decreases geometrically with increasing n = N - 1. The 
capture orbits constituting I, and C, consequently have measure zero in the (E, r )  
plane. I t  would be an interesting subject of further investigation to analyze the fractal 
properties of C,: e.g. the fractal dimension, the scaling function or the distribution 
of Lyapunov exponents of hounded orbits. These quantities were computed in [13] for 
the simpler problem of scattering off three hard discs. 

We believe that the numerical results of irregular scattering we obtained for our 
example potential can be transferred to the whole class of potentials. This holds, 
because the properties we used for the considerations in section 4 are valid for the 
whole class of potentials. But, eventually, slight alterations may be neccessary. If, for 
example, there are four regular points, the incoming region Z and consequently C will 
consist of two components which are not connected with each other. This case may 
appear if one replaces cost in the potential (3) by a Fourier series in which the term 
c o s 2  has a dominant weight. 

Finally, we remark that there is always a set in r corresponding to bounded motion 
(this was not regarded in figure 14). Its existence follows from the KAM theorem for 
c small enough in (3). Around the origin of r, which is an  elliptic fixpoint, one 
finds the usual KAM scenario with invariant curves (preserved under perturbation) 
and stochastic layers in between. There is no transition between the bounded motion 
inside of these invariant curves and the unbounded motion of A .  

P Eckelt and E Zienicke 

References 

[l] 
[Z] 
[3] 
[4] 
[5] 
[6] 
[7] 
[8] 
[9] 
[lo] 

Eckhardt B 1988 Phyaicn 33D 89-98 
Rsnkin C C and Miller W H 1971 J.Chem.Phyr. 55 315&6 
Gottdiener L 1975 Molec. Phys.  29 1585-95 
Noid D W. Gray S K and Rice S A 1986 J.Chem.Phya. 84 2649-52 
Jung C 1986 J .  Phya. A ;  Math. Gen. 18 1345-53 
Eckhhardt Band Jung C 1986 J .  Phys. A :  Moth. Gen. 19 L829-33 
Jung C 1987 J .  Phya. A :  Math. Gen. 20 1719-31 
Jung C and Scholz H J 1987 J .  Phys. A :  Malh. Gen. 20 3607-17 
Petit J M and HCnon M 1986 lcarus 66 536-55 
Manakov S V and Shchur L N 1983 Sov. Phyr. JETP Lctl. 37 54-8 



Chaos in one-dimensional collision complezes 173 

Eckhardt B and Are1 H 1988 Phil. Tlans. R.  Soc. A 326 655--96 
Jung C and Scholz H J 1988 .I. Phys. A :  Moth. Gen. 21 2301-11 
Eckhardt B 1987 J.  Phya. A :  Mafh.  Gen. 20 5971-9 
HCnon M 1988 Physieo 33 D 132-56 
Alekseev V M 1968 Mofh.  USSR Sbornik 5 73-128 
Alekseev V M 1968 Mofh.  USSR Sbornik 6 5 0 5 4 0  
Alekseev V M Moth. USSR Sbornik 7 1-43 
Alekseev V M 1981 Amer. Mafh.  Soc. Transl. 116 97-169 
Sitnibv K Sov. Phya. Dokl. 5 647-50 
Maser J 1973 Stable and Random Motions in Dynamical Sysfema (Princeton. NJ: Princeton 

Namhofa H and Thirring W 1981 2 Phyr. Rev. A 23  168.%97 
Guckmheimer J and Holmes P 1983 Nonlinear Oacillalions, Dynamical Syafcma, and Bi/"rco- 

Wiggins S Global Bi/weafiona and Chaos (New York Springer) 

University Press) 

fiona of Vector Fields (New York: Springer) 


